Mapping Data to Processors in Distributed
Memory Computations

Matthew Rosing and Robert P. Weaver

CU-CS-469-90 April 1990

Department of Computer Science
Campus Box 430
University of Colorado,
Boulder, Colorado, 80309 USA

This research was supported by AFOSR grant AFOSR-85-0251, and NSF
Cooperative Agreement CDA-8420944.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
APR 1990 2. REPORT TYPE 00-00-1990 to 00-00-1990
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Mapping Data to Processorsin Distributed Memory Computations £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 13
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

To appear in Proceedings of the Fifth Distributed Memory Computing Conference,
held in Charleston, South Carolina, April 1990

Mapping Data to Processors in Distributed Memory
Computations

Matthew Rosing
Robert P. Weaver

Department of Computer Science
University of Colorado

Boulder, Colorado 80309

Abstract

We present a structured scheme for allowing a
programmer to specify the mapping of data to dis-
tributed memory multiprocessors. This scheme lets
the programmer specify information about communi-
cation patierns as well as information about distribut-
ing data structures onto processors (including parti-
tioning with replication).

This mapping scheme allows the user to map arrays
of data to arrays of processors. The user specifies
how each azis of the data structure is mapped onto
an azis of the processor structure. This mapping may
either be one to one or one to many depending on
the parallelism, load balancing, and communication
requirements.

We discuss the basics of how this scheme is imple-
mented in the DINQ language, those areas in which
it has worked well, the few areas where we had sig-
nificant problems, and some ideas for fulure improve-
ments.

1. Introduction

A crucial issue in using distributed memory mul-
tiprocessors efficiently for data parallel computation
is the mapping of the data structures to the proces-
sors. By data parallel, we mean the programming
paradigm in which parallelism is obtained by apply-
ing a single function to sections of a data structure
concurrently.

There are two polar approaches to handling the
mapping process. The compiler may examine the pro-
gram and determine a mapping most suitable for the
problem. Or the programmer may provide some spec-
ification of the mapping. In our approach, the pro-
grammer provides high level mapping information,

and the compiler uses this information to make de-
cisions about how to implement the particular pro-
gram.

Our mapping specifications contain two general
categories of information. First, the mapping spec-
ifies how data structures are distributed onto the in-
dividual processors (we use the term distributed to
mean not only partitioning but also to include repli-
cation when a piece of data is needed on more than
one processor). Second, the mapping may specify the
communication pattern between the processors using
that data structure. In this context, we think of com-
munication as a case of replication in which the value
of the replicated data will need to be updated. For a
further discussion of this point, see Section 3.

We have been involved in the development of a lan-
guage, DINO, for which we designed this approach.
DINO requires the programmer to furnish high level
mapping information for the distributed data struc-
tures with respect to a user defined structure of pro-
cessors. In this paper, we draw on this experience to
describe a structured approach to the design of pro-
grammer specified mappings of data to processors and
to comment on some of the interesting issues raised
by the design and implementation of this approach.

Any language that uses the data parallel paradigm
for distributed memory programming will deal with
this issue in one form or another. The mapping can
be done dynamically at runtime. Linda allows the
user to distribute data by distributing its tuple space
across the processors, but can adjust the mappings
automatically at runtime[2]. Spot’s compiler does
this sort of analysis automatically on invocation of the
program([5]. Other languages have used programmer
supplied mapping primitives[l] and at least one has
provided mappings from regular data structures to
regular structures of processors, the Kali Project[3].
Neither Spot nor the Kali Project has programmer

specified mappings that allow distribution with repli-
cation or that allow specification of communication
patterns.

The remainder of this paper will provide a brief
overview of DINOQ to supply a context for the follow-
ing discussion, discuss some high level considerations
of programmer defined mappings, present our design
and implementation of mappings, discuss some of the
issues and solutions raised by this implementation,
and indicate some directions for future work.

2. An Overview of DINO

To provide a framework for this discussion of map-
ping distributed data structures, we will first give a
brief overview of DINO. DINO is a language consist-
ing of high level parallel extensions to C which is in-
tended for writing numerical programs on distributed
memory multi-processors. DINO provides the pro-
grammer with a consistent global view of the data
structures even though they may have been broken
up and distributed to processors.

DINO provides this support for data parallel pro-
gramming in the following way: First, the program-
mer specifies a regular structure (an array with one
or more dimensions) of virtual processors that reflects
the way the problem is most naturally decomposed.
For example, the programmer might specify a vector
of P processors as a structure of processors. Second,
for each major data structure in the problem, the
programmer specifies the manner in which the data
structure is mapped onto the structure of processors.
This mapping is the key to DINO and the main fo-
cus of this paper. Finally, the programmer invokes a
“composite procedure” that executes concurrently on
each processor in the structure, using that portion of
the data structure that is mapped there. This results
in a SPMD (single program, multiple data) form of
parallelism.

DINO provides inter processor communications in
two ways. First, inter processor communication arises
automatically when a distributed data structure is
used as a parameter to a composite procedure. The
parameter is distributed and collected automatically.
Second, the programmer can designate an element of
a data structure which has been mapped to more than
one processor to be sent or received. This is done by
using the data name followed by “#” on the left or
right hand side of an assignment statement respec-
tively. DINO then handles much of the underlying
communications automatically. For more information

on DINO, see [4].

There are two DINOQ features that make the imple-
mentation of the mapping process particularly com-
plex. The first is that DINO provides the program-
mer with a global view of the data structures at all
times. That is, the programmer uses the global name
to access the local portion of a data structure on a
given processor. The compiler must translate these
accesses. Second, for efficient communications DINO
allows the programmer to use “ranges” of data struc-
tures (sub-matrices). Since a range can be defined
by a data dependent expression, some portion of the
analysis required for communication may have to be
be done at run time.

3. Our Philosophy on Mappings

We have said that we see two general categories
of information that programmer specified mappings
may include, information about distribution and in-
formation about communication patterns. That is, a
mapping may serve two purposes. It allows the com-
piler to statically map the data to the processors. It
may also may allow the compiler to do a better static
analysis of communications resulting in more efficient
communication.

The obvious purpose for a mapping is to allow the
compiler to partition the data among the processors.
While this may seem to simply be a matter of di-
viding a data structure up into “pieces” and send-
ing each “piece” to a processor, in our approach it is
somewhat more complex than this. It is often useful
to have the same data value available to many pro-
cessors. Although this can be implemented by having
the programmer communicate the needed value once
the data has been partitioned, it may be more effi-
cient and easier for the programmer to think about
the problem if the mapping allows for replication of
the same “piece” on many processors.

Related to the concept of replicating data so that
more than one processor may make use of it is the fact
that the programmer may wish to update that value
during the program. For this purpose, our mappings
may also be used to provide some high level informa-
tion about communication patterns. In order to have
a communication, the compiler must know “what”
piece of data is being communicated, “when” is it
being communicated, “where” is it being communi-
cated to (from), and “how” it is communicated. Qur
approach allows the programmer to specify what data
piece is to be communicated and when (lexically) it
is to sent and received. The compiler can then de-
termine, based on the mapping, where it is to go to
(or come from) and how the communication will be

handled (all the underlying detail of messages).

To do this, we needed a communication paradigm
than can easily be described in the mapping. We use
the following paradigm: First, when a data structure
is mapped, a partition is implicitly defined. That is,
each “piece” of data is assigned to one processor that
“owns” the data. We call this the “home” processor
for that piece of data. Second, any other processor
that will need to use that piece of data is assigned
the same piece, but this processor is designated as
a “copy” processor for that piece of data. Then, all
sends and receives for this piece of data are from the
home processor to all its copy processors. With this
paradigm a parallel program is guaranteed to be de-
terministic, and communication patterns can be de-
scribed simply by specifying the copy processors, if
any, for each piece of data. (In DINO, this default
paradigm can be overridden by the programmer but
it is sufficient for many numerical algorithms.)

Using these high level concepts, we constructed a
mapping strategy. To be useful for a large class of al-
gorithms, we believe that this strategy should satisfy
five goals. First, it should provide a wide variety of
mappings so that there are natural ways to decom-
pose data structures for most problems. Second, it
should allow data to be replicated as well as simply
broken-up (partitioned) across the processors. Third,
it should provide the compiler with information to
automate as much of the inter-processor communica-
tion as possible. Fourth, it should run efficiently at
compile and run time. And fifth, it should be easy
for the programmer to generate these specifications.
One of the most interesting problems is how to resolve
the conflicts that inevitably seem to arise between the
flexibility of the mappings and the resulting efficiency
and ease of use.

4. The Mapping Constructs

We have attempted to provide a general mapping
mechanism that still allows efficient implementation
at compile time. QOur mapping specification describes
how to map arrays of data onto arrays of processors
and is based on describing how each axis of the data
structure is mapped to the processor structure (a sub-
speci “014cation). By having an (almost) orthogonal
of sub-specifications, a powerful mapping specifica-
tion can be constructed out of a simple set of primi-
tives.

A mapping specification is defined in three steps.
First, the programmer specifies how each axis of the
data structure is matched to one or more axes of

set

the structure of processors. Second, the program-
mer specifies how the data on that axis is distributed
among the processors defined in the first step. There
are three basic choices for this step, complete repli-
cation, partition, or partition with copies. Third, if
partition with copies is desired, the programmer spec-
ifies how the copies of data are distributed to other
processors.

In the first step, matching axes of the data struc-
ture to axes of the structure of processors, there are
only two primitives — “compress” and “align”. With
compress, the programmer specifies that this data
axis will not be distributed. This primitive is used if
the data structure has more axes than the structure
of processors. With align, the programmer specifies
that a particular axis in the data structure should be
mapped to a particular axis in structure of proces-
sors. If this primitive is omitted for an axis in the
data structure, the obvious default of mapping the
next available data axis to the next processor axis is
used. (A data axis might not be available because it
has been designated as “compress”.)

For example, if the programmer is mapping a two
dimensional matrix to a vector of processors, a map-
ping specification of the form:

[... llcompress]

will distribute rows to the processors and a specifica-
tion of the form:

{compress][. . .]

will distribute columns. The specific mapping of the

rows or columns will depend on what goes in the [.
] sub-specification, something that the pro-

grammer determines in steps two and three.

If the programmer is mapping a two dimensional
matrix to a two dimensional structure of processors,
the mapping specification:

[... align 1]l . align 0]

would cause the second axis of the data structure to
map to the first axis of the structure of processors,
and the first axis of the data structure to map to the
second axis of the structure of processors. In effect
this allows the matrix to be transposed and placed
on the processors.

In the second step, the distribution of a data axis
to a processor axis, there are three mapping primi-
tives — “all”, “block”, and “wrap”. Using the first
of these, the programmer can specify that the data
axis be completely replicated across the associated

axis of the structure of processors. With the sec-
ond or third, the programmer can specify that the
data axis is distributed in either one of two ways —
blocked or wrapped. Block mappings assign one (ap-
proximately) equal sized contiguous piece of the data
structure to each processor. Wrap mappings assign
every Pth position on the data axis to the same pro-
cessor (assuming P processors). Wrap is essentially a
variant on block that is used for improved load bal-
ancing in a wide variety of parallel numerical algo-
rithms. The programmer may also specify the width
" of the wrap.

If, in our first example, the matrix is N by N and
there are P processors with N = 4P, then a mapping
specification with:

[block] [compress]

would distribute four contiguous rows to each proces-
sor. Alternatively,

[compress] [wrap]

would put column 0, P, 2P, ...on processor 0, etc.

In the third step, the specification of a distribu-
tion for copies, there are two mapping primitives that
the programmer can use — “overlap”, and “cross”.
“overlap” specifies that copies of neighboring data
points on that axis will be available on each proces-
sor. The programmer can specify the direction and
depth of the overlap. “cross” allows the program-
mer to specify that copies will be available for data
points that are found in the intersection of two or
more overlaps — in effect making copies of neigh-
boring data points along diagonals available on each
processor. This might be used, for example, in an
algorithm that requires a nine point stencil.

For example, if a vector [zg z1 z2 z3]is dis-
tributed across a vector of four processors with the
mapping specification

[block overlap 1,1]
the four processors will have the following elements:

processor 0 [zo =1]
processor 1 [zo z1 =2]
processor 2 []
processor 3 |

The notation “1,1” specifies overlaps of one element
to the left and right respectively. Note that the “left-
most” and the “rightmost” processors will receive 1
element that is a copy instead of two, i.e., there is
no wrap around. The home processor of each data

element is the processor it would be mapped to if the
overlap were omitted, in this case processor 7 for ;.

If we distribute an N by N matrix across an N by
N structure of processors with the following mapping
specification:

[block overlap 1,1 cross 1]
[block overlap 1, 1]

then the data on each processor (except the edge pro-
cessors) will have the following pattern (nine point
stencil):

c N ¢
W D FE
c S ¢

where D is the data for that processor, N, S, F, and
W are copies of data from four neighboring processors
due to the overlap primitive, and the ¢’s are copies of
data from the four diagonal neighbors due to the cross
primitive.

Using this structured approach allows us to com-
bine a rather small set of primitives for each data
axis to generate a very large set of mappings from
data structures to processors. For example, if an N
by N matrix is to be distributed across a vector of N
processors so that each processor received a column
plus copies of the two columns to the left of “its”
column, the mapping would be:

[compress] [block overlap 2,0]

The “leftmost” and the “next leftmost” processors
will receive, respectively, 0 and 1 columns that are
copies.

As a final example, if an N by N matrix is to be
distributed across a vector of P processors, where N
is 16 and P is 4, so that each processor receives copies
of the closest row from the two processors next to it,
the mapping would be: '

[block overlap 1,1][compress]

The resulting data structure on a processor (for an
interior processor) would be:

r -

NSISESISE
ADUDU s
AL DD e
AOUDD e
aobogoe
RO e
RObbooe
ARbobuoze

where D is the home data for that processor, and u
and d are copies of data from the processors above
and below respectively.

5. Implementation and Performance

In this section we will discuss the results of incorpo-
rating this mapping strategy into DINO and how our
implementation has affected the efficiency of the re-
sulting DINO programs. We will examine the results
that flow from our choice of a structured mapping
strategy as well as the results of the implementation
methods we chose.

When we first laid out our mapping strategy, we
attempted to balance the flexibility of the mappings
(the potential number of useful mappings we could
construct) against the efficiency of the implementa-
tion. For example, we rejected a completely random
mapping strategy because it appeared to be too com-
plex to implement (in addition, it was not clear how
a programmer would specify such a mapping for large
data structures). Instead, we elected to follow a strat-
egy that (for the most part) treated each dimension
of the data structure as orthogonal to every other
dimension and only considered mappings where the
mapping in a given dimension could be set out with a
simple expression. For the most part, this appears to
have been a good choice. The one problem we found
is due to the use of the wrap primitive.

To make this discussion understandable, we need to.

provide some high level overview of and motivation
for the implementation of DINO. Essentially, DINO
is composed of two parts, a compiler and a run time
library. Together, these parts perform two basic func-
tions that are related to the mappings. They trans-
late programmer accesses to data structures that have
been distributed into the actual accesses to the local
data structures and they implement the communica-
tions. These concepts are discussed in some more
detail in Section. 5.1.

When we designed the compiler and the library for
DINO, we had to chose between putting the burden
of doing the necessary analysis on the compiler or on
the library, and we had to chose between implement-
ing each part of the analysis as a single large general
purpose module or implementing each part as a series
of specialized modules. In both cases, we did some of
each. We had mostly good results with this approach
but there have been a few problems.

Initially we decided to do all of the access transla-
tion analysis in the compiler and to do all of the anal-
ysis required for communication in the library. We
felt that the access translation was more critical to
efficiency than the communication analysis. In addi-
tion, the analysis associated with the communication
is much more complex than the access translation. It

was easier to design a single set of library modules to
handle the general communication case than it was
to determine how much the compiler could do versus
what had to be done at run time.

For the same reasons, the compiler generates the
expressions necessary for access translation in such a
way that they are tailored to the specific data struc-
ture, processor structure, and mapping. But we took
the opposite approach with communications. Partly
because the communications analysis is much more
complex, we decided to solve the general problem
first, then look at specific optimizations later.

In our preliminary testing of the first implementa-
tion of DINQ, all of the noticeable performance prob-
lems appear to flow principally from these three de-
cisions. The first, the use of the wrap primitive, is
discussed in Section 5.2.1. The second, our choice
of a particular division of the analysis task between
the compiler and the run time library, is discussed in
Section 5.2.2. The third, the generality of the com-
munications analysis, is addressed in Section 5.2.3.

Partly as a result of these problems, we added a few
optimizations to the completed compiler and run time
library. Overall, the results from these optimizations
have been encouraging. In certain programs with sim-
ple mapping functions, the resulting execution times
are within a few percent of hand coded programs. On
the other hand, there are a few mappings that, in the
current version, result in inefficient code. We present
more information on this in Section 5.3.

5.1 The DINO Implementation

DINO’s compiler does a complete syntatic and se-
mantic analysis of the programmer’s code, and if
there are no mistakes, generates C code for the target
machine. Some of this C code is in the form of ta-
bles that provide information to the run time library.
The library is a group of support functions called by
the code generated by the compiler, and happens in
the first version of DINO to be mainly used for com-
munications. No matter how sophisticated we make
the compiler, some analysis will have to be done at
run time because not all the information necessary
to translate the DINO constructs is known until run
time.

The mappings are used by the compiler and the li-
brary to translate programmer accesses to distributed
data into the correct physical accesses and to gen-
erate low level communication calls that implement
communication in DINO (this applies to parameter
distribution and collection as well as more explicit

communication between processors). To provide a
context for the rest of the discussion, we will give a
brief description of each of these functions.

First, DINO uses the mappings to provide for cor-
rect programmer access to data that has been dis-
tributed to processors. Since the programmer sees
the data globally but any particular processor only
has enough storage for the data that is resident there,
DINO must translate this difference in viewpoint.
Essentially, the compiler generates an expression for
each dimension in the data structure into which the
programmer’s access expression can be inserted and
then the entire expression is evaluated for the cor-
rect access for this processor. For example, if A[12]
is blocked across a vector of 4 processors, and the
programmer accesses A[I], the “I” is translated into
“(I) — of fset” where “of fset” is a value dependent
on which processor is executing.

There are three different times at which this com-
putation is done, compile time, beginning of runtime,
and access time. In the example above, the expres-
sion “(I)—of fset” is computed at compile time, the
value of “of fset” is determined when the procedure
starts to execute on that processor and the value of
“I) — of fset” is computed at each access. An op-
timizing compiler that does common subexpression
elimination can reduce the amount of access time
computation, especially for accesses occurring within
loops. Using the same basic methodology, the com-
piler could generate expressions that would test the
legality of accesses. This would be useful (presum-
ably as a compiler option) in debugging, but is not
done currently.

Second, DINO uses the mappings to provide for
correct communications of data that is distributed.
We will describe how sends of distributed data work.
Receives of distributed data and parameter distri-
bution and collection are similar. In the send case,
the programmer indicates that some element or range
(sub-array) of data is to be sent. DINO determines
which processors are the recipients {there can be more
than one), and for each processor, it generates infor-
mation that is used to copy the data to be sent to
that processor into a communication buffer which is
then transmitted.

Because the range that the programmer specifies
(which may not be known until run time) affects not
only the specific piece(s) of data to be sent, but also
the processors it (they) can be sent to, this communi-
cations analysis can be quite complex. For example,
in our overlapped block row example (the last exam-
ple in Section 4), if the programmer specifies that

the entire home piece is to be sent, there are gener-
ally two other processors that it will be sent to. If,
however, the programmer specifies some subset of the
home piece, there may be zero, one, or two other pro-
cessors involved.

Thus the compiler and the runtime library together
convert DINO constructs into C code that will run
on the target machine. How much of that conversion
each part should do and the manner in which it should
be done are addressed next.

5.2 Performance of the Original Design

Initially we will discuss the results of implementing
the original design. To the extent we can, we examine
the impact of using the structured mapping strategy,
placing certain parts of the analysis in the library,
and using general purpose modules. In the sections
that follow this, we present solutions to some of the
problems we identify here.

The access translation of structured mappings has
turned out to be very efficient. In our preliminary
timings, we have found no significant time differences
between DINO programs with large number of ac-
cesses to distributed data and hand coded programs
executing the same algorithm. We believe that we
have shown that one can reasonably implement a dis-
tributed language where the programmer maintains
a global view of data, even after it is distributeded.

For communications using structured mappings,
the results are mixed. For certain simple mappings
of large data structures, the efficiency of DINO when
doing parameter distribution or sends and receives
comes close to hand coded programs. For much
smaller data structures or short messages, DINO
communications are somewhat slower. In a worse case
test, zero length DINO messages take two to three
times longer on the Intel iPSC2 than hand coded
ones. These problems are largely due to the amount
of run time analysis and the use of general purpose
modules and are discussed in Sections 5.2.2 and 5.2.3..

However, one communication problem was directly
due to the mapping strategy. We turn to that prob-
lem first.

5.2.1 The Use of Structured Mappings. One of the
mappings we chose to implement — the wrap - turned
out to be fairly inefficient in practice. Our experience
with this leads us to believe that certain kinds of map-
pings will generally present us with performance con-
cerns. Those mappings are characterized by the fact
that they put logically disjoint pieces of data on a
processor. By logically disjoint, we mean that if you

draw a picture of the global data structure, all the
data going to a processor is not contiguous.

To illustrate this, contrast the parameter distribu-
tion of an N by N matrix onto a vector of P pro-
cessors with N = 1024 and P = 16, for the two
cases of [compress] [block] (blocks of columns) and
[compress] [wrap] (wrapped columns). In the block
case, DINO does 1024 high speed memory to mem-
ory copies to set the data up for distribution for each
processor. (We use optimized assembly language rou-
tines to do the copying.) In the wrap case, DINO
does 65536 such copies for each processor — the time
for copying is O(N?/P) instead of O(N). To make
matters worse, in the wrap case the size of each piece
being copied is so small that the analysis of where the
next piece starts begins to take more time than the
copying. The times for the parameter distribution for
these two cases on the Intel iPSC2 are 8 seconds and
177 seconds respectively.

Note, that we can only attack the second half of
the problem by changing the implementation (putting
most of the analysis back into the compiler). The first
half remains. Solutions are discussed in Sections 5.3.1
and 5.4.1.

It is also important to understand that this prob-
lem only occurs when DINO is distributing param-
eters or collecting them. Once the wrap parameters
are distributed to the processors, the data is no longer
logically disjoint and this problem disappears.

5.2.2 Run Time Analysis. We chose to do as much
of the necessary analysis for access translation as we
could in the compiler. Conversely, we chose to do
most of the communications analysis in the library.

Because the access translation appears to achieve
good efficiency, letting the compiler do as much of
the work as possible appears to have been the correct
strategy.

However, the penalty we incurred in some commu-
nications is significant. For very short messages, the
amount of time consumed by the preliminary analysis
that must precede any send or receive is substantial
in comparison to the time for the communication it-
self. In programs with fine grained communication,
the DINO user pays a noticeable penalty over the
hand coded program.

For instance, in the block overlap example (the last
example given in Section 4) for a send, the run time
system must first determine that there are at most
two processors that might be targets (unless this is
an edge processor) and which ones they are, then it
must determine if data actually goes to those proces-

sors, finally it has to generate the information neces-
sary to copy the data for each. If the the compiler
were doing some of the analysis for this mapping, it
could determine in advance that, at most, only two
processors are involved and it could generate a sim-
ple expression to decide which one(s). We discuss this
improvement in Section 5.3.1.

5.2.3 General Purpose Modules. We also chose to
do most of the communications analysis in a single,
general purpose module instead of using many, tai-
lored modules. Unfortunately, it turned out that this
strategy appears to penalize the simple cases by re-
quiring a complex analysis.

For instance, in our column wrap example above,
the library may have to allow for the size and shape
of the data structures that make up the actual and
the formal parameters (the two do not have to be
the same), the size of the element, the width of the
wrap (this can be greater than one), and the number
of processors. All of this must be examined for a
general analysis, even though in most cases the actual
analysis could be much simpler.

We address the possibility of reducing the amount
of this analysis in Section 5.3.1.

5.3 Currently Implemented Improvements

We now discuss two improvements to the imple-
mentation approach described above that are in the
current version of DINO and that result in better
performance. We first address the performance prob-
lem with certain communications discussed in Sec-
tions 5.2.2 and 5.2.3, then talk about an optimization
that addresses a problem we haven’t yet discussed,
the message typing problem.

5.3.1 Communication improvements. The obvious
alternative to the current way of handling the commu-
nications is for the compiler to generate functions or
expressions to handle the analysis and copying neces-
sary for communication that are specific to each data
structure. These functions or expressions could be
optimized for the specific combination of data struc-
ture, processor structure, and mapping. This step
would clearly alleviate many of the communications
problems we found.

It turns out that we can go one step further: the
compiler can generate functions that are also tailored
to the specific data access pattern involved in the par-
ticular communication. For example, if the mapping
results in the block overlap example, and the compiler
just knows about the data structure, the processor
structure, and the mapping, then it only knows that

no more than two other processors can be involved.
The programmer could specify a complex send that
would involve one or both of these processors and
many different combinations of the data. But if the
compiler examines the programmer’s specification of
the send, it may be able to deduce much more than
this.

For example, if the programmer writes:
Afid * N / PI1[0]# = .

(where id is a DINO constant that has the processor
index as its value and [] signifies that the whole row is
involved), the compiler can determine exactly which
piece of data is involved (and that it is physically
contiguous) and which processor it is to be sent to.

Thus if the expression needed for the analysis of
a specific communication is tailored not only for the
the data structure, the processor structure, and the
mapping, but also for the specific data access involved
in that communication, that expression can often be
much simpler. We currently do optimizations of this
type for a few simple cases and have found that the
send and receive times do not differ very much from
those generated by hand coded programs. In the Intel
iPSC2, the start up time per message has increased
from 300 psec to 600 usec but the transfer time per
byte remains the same.

We believe that we need to adopt this strategy for
all communications in DINO.

5.3.2 The Message Typing Problem. Because of
the semantics of DINO, we assign a message type to
each message involved in a send/receive that uniquely
identifies the “name” of the data being sent. By
“name” we mean not only the variable name assigned
to the particular data structure but also the exact
range (sub-array) of the particular part of the struc-
ture involved in the communication. We then use the
message type provided by Intel on the iPSC1 or the
iPSC2 to receive only the particular message we are
looking for.

However, the possible number of message types for
for the data structures in most programs is larger
than the size of the type integer provided for either
machine. In these cases, we are forced to put a header
on the message which contains the type, receive these
messages, examine them so see if the type is correct,
and store them in buffers if it is not.

For example, in order to cover all possibilities, for a
1024 by 1024 array we must reserve about 2 message
types. This exceeds the available message types on
both the iPSC1 and iPSC2. However, if the only
access to the this array is of the form:

Alvariable] []

then there are only 2'° message types needed. Thus,
if the compiler examines the whole program and looks
at all of the sends and receives for each data struc-
ture, it can often significantly reduce the number of
message types needed so that we actually stay within
the number provided by the machine. We do this par-
ticular optimization in the current DINO compiler.

5.4 Potential Future Improvements

Finally, we discuss several improvements that could
be made which we believe would result in better per-
formance of programs using our mapping approach.
The first of these addresses the [compress] [wrap]
problem described above. The others would simply
provide us with additional improvements in certain
cases if we could interact with the machine at a lower
level.

5.4.1 Transposing Data Structures. In an exam-
ple that we discussed earlier, we showed how using
a [compress] [wrap] mapping could seriously affect
the performance of the program. While some of this
problem can be ameliorated by using the techniques
described above in Section 5.3.1, some of it is irre-
vocably tied up with the particular mapping. If a
programmer is going to do column wraps, there will
be a O(N?/P) problem whether it is done by hand
or in a high level language.

One possible solution to this problem is for the
compiler to examine the mapping and the particu-
lar data structure, and warn the programmer when
the particular combination is likely to result in a sig-
nificant performance degradation. The programmer
could then decide if the particular algorithm allowed
the data structure to be transposed or if a different
mapping could be used. This solution is possible be-
cause high level mapping information is supplied to
the compiler.

5.4.2 Interacting with the Operating System. Fi-
nally, there are some possible improvements we could
make if we had more control over how the underlying
communications operated. We mention three possi-
bilities.

First, in an architecture that permitted it, it might
be faster to open communication channels at the be-
ginning of a program (or a procedure) and leave them
open for many messages. The compiler would have
to do enough analysis of the communication patterns
to know that it would be possible to get all the mes-
sages through if this was done. High level mapping

" information makes this feasible.

Second, if we could provide the operating system
with information about the structure of data which
is being communicated and which happens not to
be stored as single physically contiguous piece, then
the operating system could directly copy to or from
that data structure. This would avoid the additional

bu“013ering and copying step that we have to do now in

this case.

Finally, if the operating system was able to accept
much larger message types, we could avoid the du-
plicate buffering and copying that occurs when we
are unable to assign unique message types under the
current system. In addition, we could eliminate the
current compiler overhead of optimizing the message
type generation.

6. Future Research

In addition to implementing some of the changes
we discussed above, we intend to explore several ad-
ditional mapping primitives at some time in the fu-
ture.

The first is not a new primitive that the program-
mer uses, but rather an operation that the compiler
does. Currently, it is not legal to have a data struc-
ture with fewer dimensions than the structure of pro-
cessors unless the data is mapped “all” (a copy of
the whole data structure goes to each processor). We
want to redefine the mapping process so that the pro-
grammer defined mapping is simply replicated along
the axis(es) of the processor structure that have not
been aligned with any axis of the data structure. This
would allow any combination of data structure dimen-
sion and processor structure dimension.

Second, we want to add a “ring” primitive. This
would specify that a particular data axis would ap-
pear to be a ring for purpose of overlap copies.

Third, we want to add several variations on the
communication implications of the “all” primitive.
Currently, that primitive defines index zero of the axis
to be the “home” copy for communications purposes.
Which index is the home processor should be under
the control of the programmer.

Fourth, we want to explore mappings for more com-
plex communication patterns. An example would be
a power of two offset mapping. This mapping would
specify that the two copy processors were a program-
mer defined power of two away on the data axis and
would be particularly useful for fast fourier transform
algorithms.

Finally, we want to explore dynamic mappings,

that is, mappings where the mapping definition
changes during the program execution.

7. Summary

We believe that our use of these structured map-
pings has provided us with both a number of benefits
and a number of problems. There are four primary
benefits.

Most importantly, our approach provides the ben-
efit of greatly simplifying how the programmer spec-
ifies data decomposition.

Second, it simplifies inter-process communication
for the programmer by making it unnecessary to spec-
ify the destination or source of sends and receives and
by handling parameter distribution and collection au-
tomatically.

Third, it provides the programmer with a large
number of choices using only a few primitives. We
believe that this mapping process is reasonably easy
for a programmer to master, because only a few prim-
itives need be used to generate a large number of map-
pings. In addition, DINO allows the programmer to

" predeclare mappings and simply reference them by

name. This allows us to construct libraries of com-
mon mappings.

Finally, it works relatively efficiently for most of
the common mappings we have tried.

These benefits do not come without a price. Most
obviously, there is some performance degradation in
a few cases. How serious these will be is difficult to
tell until we can try some of the improvements we
propose. .

References

[1] D. Callahan and K. Kennedy. “Compiling Pro-
grams for Distributed Memory Multiprocessors.”
The Journal of Supercomputing, 2:151-169, 1988.

[2] R. Bjornson. “Experience with Linda on the
IPSC/2.” The Proceedings of the Fourth Confer-
ence on Hypercubes, Concurrent Computers, and
Applications, 493 - 500, March 1989. '

[3] P. Mehrotra and J. Van Rosendale. “Compiling
High Level Constructs to Distributed Memory
Architectures.” ICASE Report. Number 89-20,
March 1989.

[4] M. Rosing, R. Schnabel, R. Weaver. “DINO: Sum-
mary and Examples.” Proceedings of the Third

Conference on Hypercube Concurrent Computers
and Applications, 472 - 481, January 1988.

[5] D.Socha. “Spot: A data parallel language for iter-
ative algorithms.” Submitted to ICPP90, January
1990.

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

